Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 465: 133249, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38154189

RESUMEN

The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.


Asunto(s)
Coronavirus Humano 229E , Subtipo H1N1 del Virus de la Influenza A , Concanavalina A/genética , Microfluídica , Subtipo H1N1 del Virus de la Influenza A/genética , Aerosoles y Gotitas Respiratorias , Coronavirus Humano 229E/genética , Reacción en Cadena de la Polimerasa
2.
J Hazard Mater ; 445: 130458, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444810

RESUMEN

The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.


Asunto(s)
Filtros de Aire , Contaminación del Aire Interior , COVID-19 , Humanos , Dióxido de Silicio , SARS-CoV-2 , COVID-19/prevención & control , Aerosoles y Gotitas Respiratorias , Antivirales , Contaminación del Aire Interior/análisis
3.
ACS Nano ; 16(11): 19423-19438, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36255335

RESUMEN

The assemblies of anisotropic nanomaterials have attracted considerable interest in advanced tumor therapeutics because of the extended surfaces for loading of active molecules and the extraordinary responses to external stimuli for combinatorial therapies. These nanomaterials were usually constructed through templated or seed-mediated hydrothermal reactions, but the lack of uniformity in size and morphology, as well as the process complexities from multiple separation and purification steps, impede their practical use in cancer nanotherapy. Gas-phase epitaxy, also called aerotaxy (AT), has been introduced as an innovative method for the continuous assembly of anisotropic nanomaterials with a uniform distribution. This process does not require expensive crystal substrates and high vacuum conditions. Nevertheless, AT has been used limitedly to build high-aspect-ratio semiconductor nanomaterials. With these considerations, a modified AT was designed for the continuous in-flight assembly of the cell-penetrating Fenton nanoagents (Mn-Fe CaCO3 (AT) and Mn-Fe SiO2 (AT)) in a single-pass gas flow because cellular internalization activity is essential for cancer nanotherapeutics. The modified AT of Mn-Fe CaCO3 and Mn-Fe SiO2 to generate surface nanoroughness significantly enhanced the cellular internalization capability because of the preferential contact mode with the cancer cell membrane for Fenton reaction-induced apoptosis. In addition, it was even workable for doxorubicin (DOX)-resistant cancer cells after DOX loading on the nanoagents. After combining with immune-checkpoint blockers (antiprogrammed death-ligand 1 antibodies), the antitumor effect was improved further with no systemic toxicity as chemo-immuno-chemodynamic combination therapeutics despite the absence of targeting ligands and external stimuli.


Asunto(s)
Nanoestructuras , Neoplasias , Humanos , Dióxido de Silicio/farmacología , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Doxorrubicina/química , Nanoestructuras/química , Apoptosis , Línea Celular Tumoral
4.
Nanomicro Lett ; 12(1): 90, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-34138119

RESUMEN

Because of enhanced efficacy and lower side effects, cancer immunotherapies have recently been extensively investigated in clinical trials to overcome the limitations of conventional cancer monotherapies. Although engineering attempts have been made to build nanosystems even including stimulus nanomaterials for the efficient delivery of antigens, adjuvants, or anticancer drugs to improve immunogenic cancer cell death, this requires huge R&D efforts and investment for clinically relevant findings to be approved for translation of the nanosystems. To this end, in this study, an air-liquid two-phase electrospray was developed for stable bubble pressing under a balance between mechanical and electrical parameters of the spray to continuously produce biomimetic nanosystems consisting of only clinically relevant compounds [paclitaxel-loaded fake blood cell Eudragit particle (Eu-FBCP/PTX)] to provide a conceptual leap for the timely development of translatable chemo-immunotherapeutic nanosystems. This was pursued as the efficacy of systems for delivering anticancer agents that has been mainly influenced by nanosystem shape because of its relevance to transporting behavior to organs, blood circulation, and cell-membrane interactions. The resulting Eu-FBCP/PTX nanosystems exhibiting phagocytic and micropinocytic uptake behaviors can confer better efficacy in chemo-immunotherapeutics in the absence and presence of anti-PD-L1 antibodies than similar sized PTX-loaded spherical Eu particles (Eu-s/PTX).

5.
ACS Nano ; 13(11): 12798-12809, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31689083

RESUMEN

Due to antimicrobial resistance and the adverse health effects that follow broad and inappropriate use of antibacterial agents, new classes of antibacterials with broad and strong bactericidal activity and safety for human use are urgently required globally, increasingly so with the onset of climate change. However, R&D in this field is known to be rarely profitable, unless a cost-effective, flexible, and convenient platform that ensures the production of workable candidate antibacterials can be developed. To address this issue, inorganic nanomaterials have been considered for their bactericidal activities, yet further investigations of composition crystalline modifications and/or surface biomaterial coatings are still required to provide effective and safe antibacterial nanoparticles. In this study, we developed a plug-in system comprising a spark plasma reactor and a flow heater under nitrogen gas flow to supply precursor inorganic nanoparticles (Cu-Te configuration) that can be modulated in-flight at different temperatures. From antibacterial and toxicological assays in both in vitro and in vivo models, bactericidal and toxicological profiles showed that the plug-in system-based platform can be used to identify key parameters for producing safe-by-design agents with antibacterial activity [>88% (in vitro) and >80% (in vivo) in antibacterial efficiency] and safety (>65% in in vitro viability and >60% in in vivo survival rate).


Asunto(s)
Antibacterianos/farmacología , Cobre/farmacología , Diseño de Fármacos , Escherichia coli/efectos de los fármacos , Nanopartículas/química , Staphylococcus epidermidis/efectos de los fármacos , Telurio/farmacología , Antibacterianos/química , Cobre/química , Pruebas de Sensibilidad Microbiana , Telurio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...